Propagation of hemp (Cannabis sativa) Dr. Mark Bridgen mpb27@cornell.edu

Cornell University Hemp Webinar Series February 8, 2023

LIHREC has specialists in all areas of horticulture:

Greenhouse & Floriculture Fruit: Viticulture Vegetables/potatoes Woody ornamentals/Landscape plants <u>Cross Commodity Specialists</u>: Plant disease Weed science Entomology Plant Tissue Culture

We are one-of-a-kind in USA!

Plant Propagation

Propagation media

Plant Propagation

The multiplication of plants by both sexual and asexual means

Hemp plants can be propagated by sexual and asexual means

TODAY:

- 1. Seed propagation
- 2. Vegetative cutting propagation
- 3. Micropropagation

Select healthy specimens!

- Select healthy specimens!
- **Growing media** there are many options!
 - Porous for good drainage
 - Free from weed seeds, pathogens, and insects
 - Easy to wet and maintain moisture
 - Retention of nutrient

- Select healthy specimens!
- Growing media there are many options!
 - Porous for good drainage
 - Free from weed seeds, pathogens, and insects
 - Easy to wet and maintain moisture
 - Retention of nutrient

• Light

- Daylength/Photoperiod
- Intensity
- Wavelength

Water management and humidity

- Intermittent mist?
- Plastic covers?

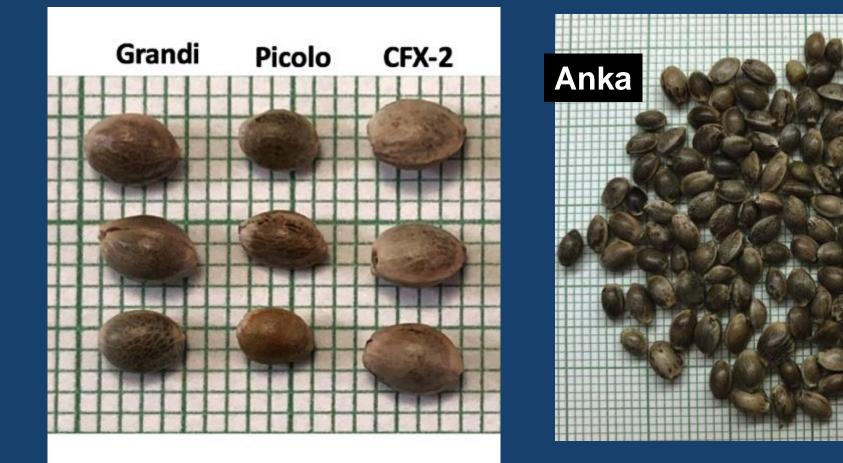
Water management and humidity

- Greenhouse Temperature
 - 73 77°F is ideal for germination and rooting of cuttings of most plants
 - For hemp: up to 80°F to 82°F

- Water management and humidity
- Greenhouse Temperature
- Cleanliness
 - Good sanitation

Seed Propagation vs. Vegetative Propagation

Hemp plants are dioecious


Pistillate and staminate organs occur on different plants.
Pistillate plants are desirable

 Genetic recombination results in segregation of traits & phenotypic diversity

• Do you want clones? Use vegetative cutting propagation

Seed Morphology

Dispersal unit is an achene - outer layer is a pericarp as in sunflower seed

Alan Taylor, Cornell

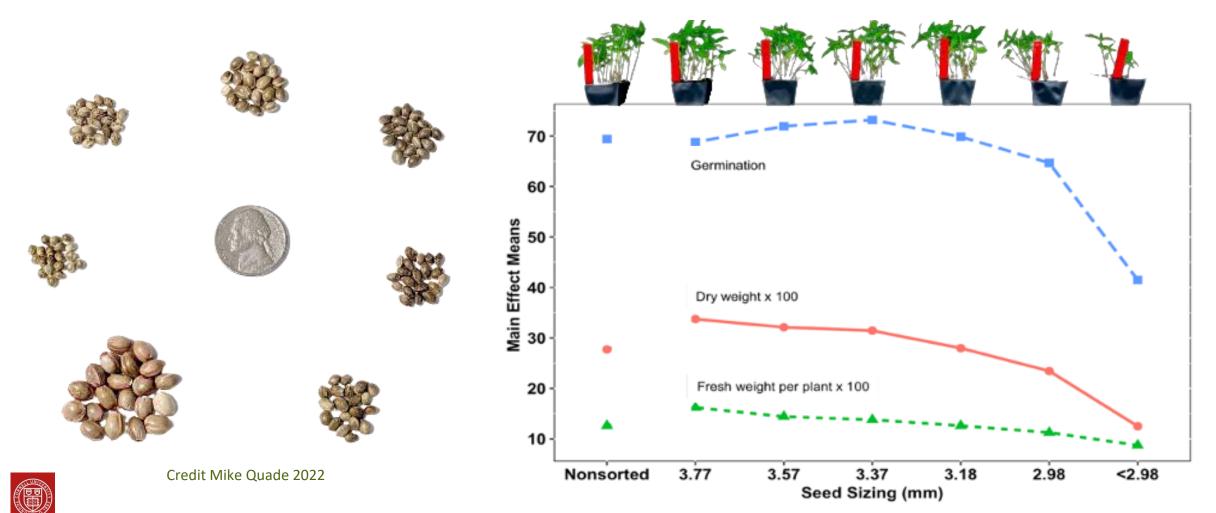
- Start with the correct, viable seed: use GOOD GENETICS
 - Feminized seeds for CBD hemp

Understand your field soil or greenhouse media:
 well-draining, low weed pressure, and has plenty of nutrients will lay a healthy foundation

Soil tests for field soil

 Strategically plan outdoor production to maximize the environment at your location

Consider frosts, day length, and rain

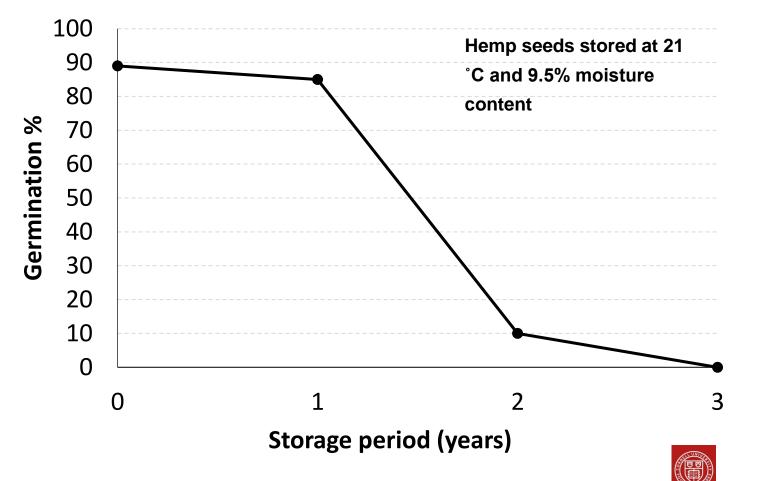

- Pre-soak seeds for 8-12 hours to improve germination (no longer than 24 hours)
 Helpful, but not necessary
- Ideal seed germination temperature: Between 65°-80°F
- Plant seeds about 1-inch deep
- Seeds can germinate in light or dark conditions (Small 2016)

Water thoroughly

Propagation from seed

Alan Taylor, Michael Loos, Masi Amirkhani, Hilary Mayton Cornell University, Geneva, NY

SEED SIZE impacts seed quality


Mi, R.; Taylor, A.G.; Smart, L.B.; Mattson, N.S. 2020, https://doi.org/10.3390/agriculture10120617

Hemp Seed Storage

- Need to store seeds to maintain viability and vigor
- Hemp seed have short-medium longevity in relation to vegetable crop seeds

0.2 mm View of the second sec

Tetrazolium viability test. A, non-viable seeds, seed of hemp (*Photo by S. Elias, Oregon State Univ*).

Alan Taylor, Michael Loos, Masi Amirkhani, Hilary Mayton Cornell University, Geneva, NY

A clone is an exact copy to maintain their genetic and phenotypic characteristics

• A clone is an exact copy

- to maintain their genetic and phenotypic characteristics
- You can easily take many clones at once from a single plant

- A clone is an exact copy
 - to maintain their genetic and phenotypic characteristics
- You can easily take many clones at once from a single plant
- You can obtain all female plants

• A clone is an exact copy

to maintain their genetic and phenotypic characteristics

- You can easily take many clones at once from a single plant
- You can obtain all female plants
- Uniformity

A clone is an exact copy

 to maintain their genetic and phenotypic characteristics

- You can easily take many clones at once from a single plant
- You can obtain all female plants
- Uniformity
- Low cost

- A clone is an exact copy
 - to maintain their genetic and phenotypic characteristics
- You can easily take many clones at once from a single plant
- You can obtain all female plants
- Uniformity
- Low cost

Clones get a head-start compared to seedlings

- A clone is an exact copy
 - to maintain their genetic and phenotypic characteristics
- You can easily take many clones at once from a single plant
- You can obtain all female plants
- Uniformity
- Low cost

- Clones get a head-start compared to seedlings
- Year-round production in greenhouses

What are STEM CUTTINGS?

- Stem cuttings = the most common approach to vegetative propagation hemp
- A cutting is a piece of plant that has been cut off from a parent plant and then given the opportunity to make roots of its own

 Grow into an identical plant as the original stock plant

What you will need:

- Sharp knife, clippers (scissors), or a razor
 - clean and disinfect all your tools
- Propagation medium
- Rooting hormone (1,000 ppm)
- Humidity domes or intermittent mist system (greenhouses)
- Take clones from "mature" plants

Hormodin #1 = 0.1% IBA (1,000 ppm) Hormodin #2 = 0.3% IBA (3,000 ppm) Hormodin #3 = 0.8% IBA (8,000 ppm)

Stem Cutting Propagation of Hemp

 Take cuttings* from a well-established and healthy plant (preferably not flowering)

Nutrition is important

- Stock plants fertigated with 100, 200, & 300 PPM N (15-5-15)
- Greatest fresh root weight and rooting percentages when cuttings are provided with nutrients in propagation
- Stock plants treated with 200 & 300 PPM N showed no chlorosis and produced larger plants (more harvestable cuttings)

From left to right: Stock plants treated with 100, 200, & 300 PPM N (15-5-15)

Alex Carver & Dr. James Faust Clemson University, South Carolina

Stem Cutting Propagation of Hemp

Remove apical cuttings from stock plant with 2 to 3 nodes

Approximately 5" – 8"

Stem Cutting Propagation of Hemp Trim off any huge lower leaves and clip the top fan leaves if they are big

Stem Cutting Propagation of Hemp

Gently wound the bottom of the cutting

Treat with a rooting powder 0.1% IBA (1,000 ppm)

Exogeneous Auxin Application

- Results are cultivar specific
 - 7 cv evaluated
- 4 x 4 factorial (16 treatment combinations) of K-IBA and K-NAA liquid dip treatments
 - 0, 2000, 4000, 6000 PPM K-IBA
 - 0, 2000, 4000, 6000 PPM K-NAA
- Overall, 2000-4000 ppm NAA or IBA produced greatest rooting percentages when applied as quick dip

Alex Carver & Dr. James Faust Clemson University, South Carolina

Campbell et al. (2021) report that rockwool offered a 7–13-fold improvement

Stem Cutting Propagation of Hemp

Place cuttings in a high humidity environment

Cloning domesIntermittent mist

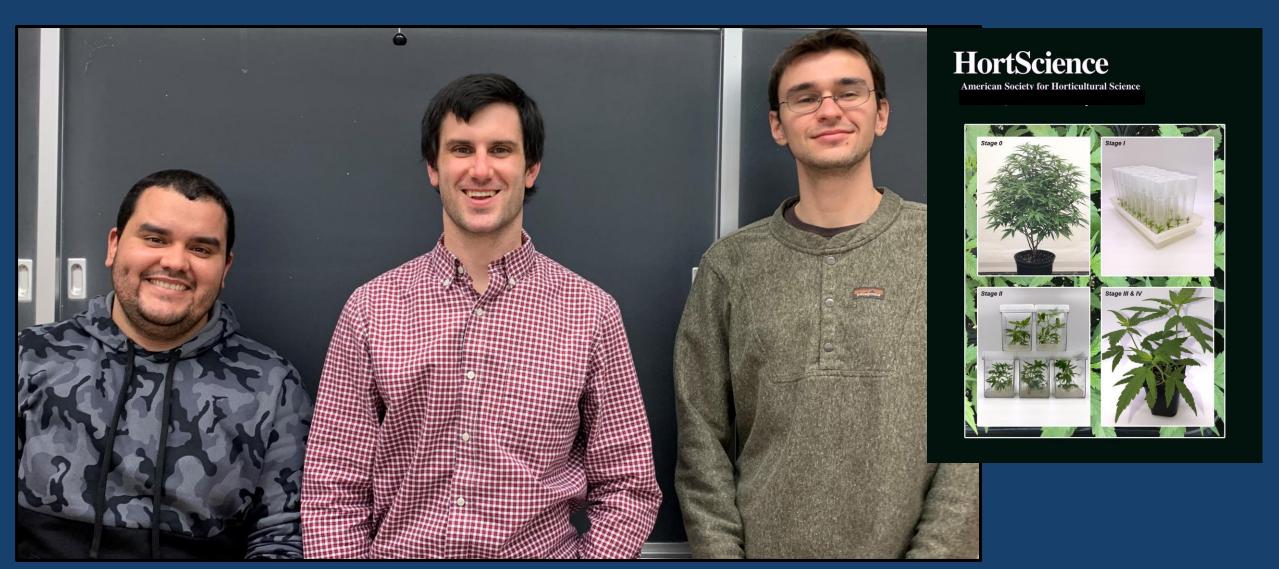
Stem Cutting Propagation of Hemp

About 72°-75°F are generally used. Plus 2°-3°F higher root zone temperature

Long days: 16/8 (Light/Dark)

Plant Tissue Culture

The growth of plants on a sterile nutrient medium *in vitro* under controlled environmental conditions



LYDIANE KYTE - JOHN KLEYN HOLLY SCOGGINS - MARK BRIDGEN

MICROPROPAGATION The rapid clonal propagation of plants *in vitro*

Micropropagation of Hemp (*Cannabis sativa* L.) Victor Zayas, Conor Stephen, Andrei Galic

Why Hemp micropropagation?

- Clonal propagation
- Clean, vigorous plant material
- Efficient space utilization
- Large numbers
- Less maintenance
- Year-round production
- Controlled environment
- Disease free plants are possible

Stages of Micropropagation

Stage 0: Proper Growth and Selection Stage I: Introduction and aseptic establishment

Stage II: Multiplication

Stage III & IV: Rooting/Acclimation

Factors Influencing Micropropagation: Growth Medium

- Nutrients + vitamins
- Carbohydrates (Sugar)
- Gelling Agents
- Plant Growth Regulators (Hormones)

Factors Influencing Micropropagation

• Explant type

Temperature

Culture pH

Stage I Materials and Methods

'TJ's CBD'

Treatments:

- Bleach concentrations (7.5% NaOCI)
 - 20%, 40%, 60%
 - 10 minute duration
- Stock plant environment
 - Greenhouse vs. Growth Chamber

Environment	Bleach Concentration	Percent Alive	Percent Contaminated
Greenhouse	20%	75%	90%
	40%	75%	90%
	60%	70%	85%
Growth Chamber	20%	100%	0%
	40%	95%	5%
	60%	100%	0%

KEY POINTS:

- Plant material that is grown in a growth chamber has a better chance for success
- No differences observed between disinfection treatments all work well
- No bleach concentration damaged plant material suggesting higher concentrations can be used

Stage II Nutrient Media

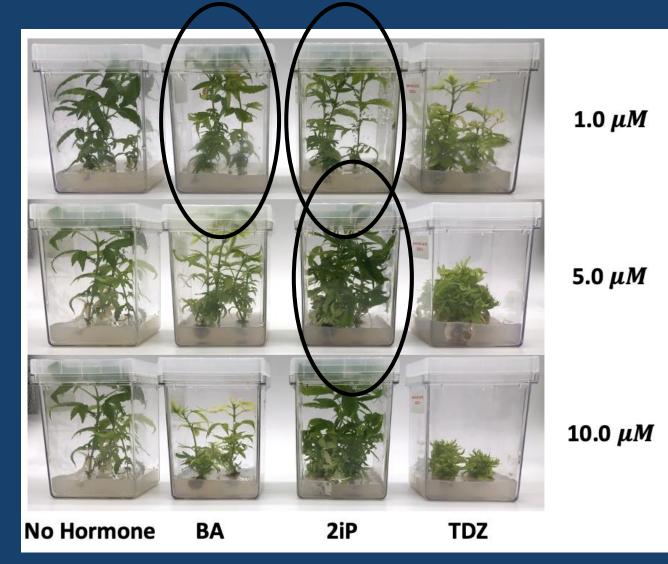
Murashige and Skoog (MS) Linsmaier & Skoog (LS) Driver & Kuniyuki Walnut Media (DKW) Lloyd & McCown Woody Plant Medium (WPM)

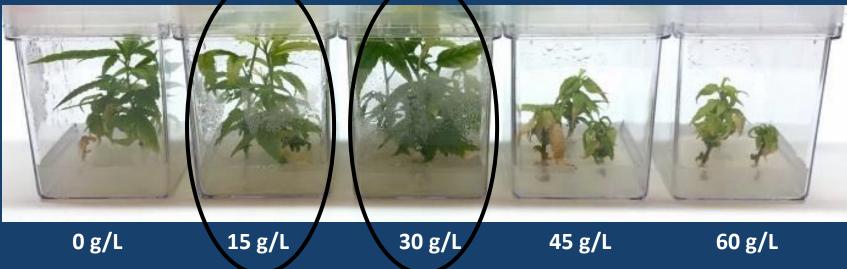
Results:

- No significant differences between MS, LS, and DKW fresh weight, height, or rating
- WPM resulted in lowest fresh weight, shoot number, and rating

Stage II Cytokinins

Comparing the cytokinins: 6-Benzylaminopurine (BA) 6-(γ,γ-Dimethylallylamino) Purine (2iP) Thidiazuron (TDZ)


at concentrations of 1.0 μM 5.0 μM 10.0 μM


Stage II Cytokinin

Results:

- 5.0 μM TDZ produced greater fresh weight and number of nodes
 - Also produced shorter shoots and more callus
- 1.0 μ M BA, 1.0 μ M 2iP, and 5.0 μ M 2iP produced significantly greater explant rating
- Low rates of 2iP or BA is recommended

Stage II: Carbohydrate

Results:

- 15 g/L and 30 g/L sucrose produced greater length, fresh weight, and rating
- 15 g/L showed less hyperhydricity
- 15 g/L sucrose recommended to maintain quality and reduce costs

Stage II Gelling Agent

• Results:

 No differences in fresh weight, numbers of nodes, shoot length, and rating between treatments

Agargellan

Agar

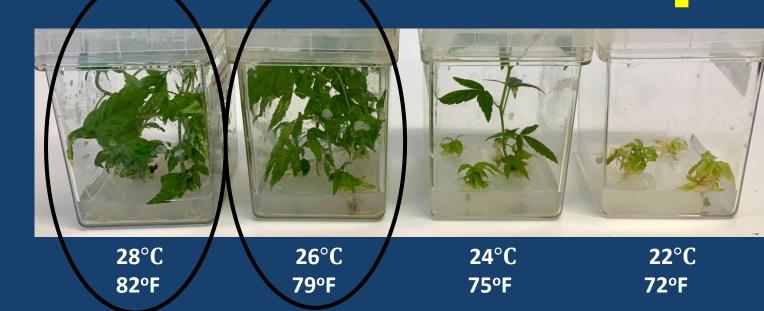

Gellan Gum*

Long term exposure to gellan gum may be detrimental to growth

* Gelrite, Phytagel, Gel-Gro, etc.

Stage II

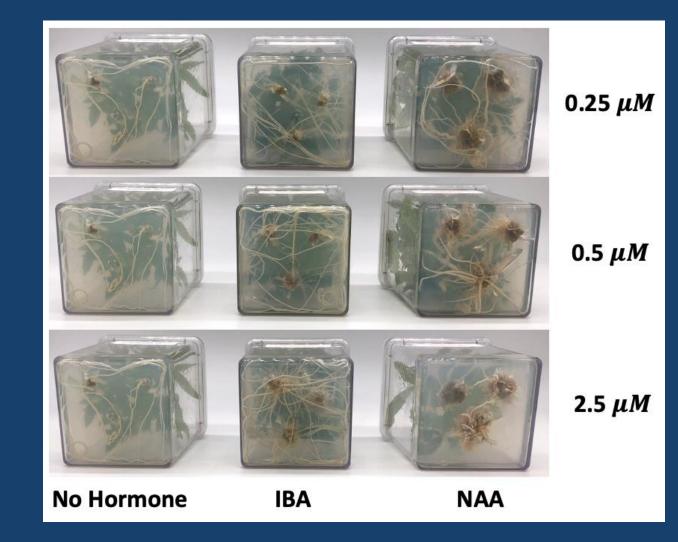
Results:


- 5.8, 6.0, and 7.0 pH produced more nodes and less chlorotic than 4.0 and 5.0 pH
 - No differences between treatment fresh weight, shoot length, and the number of explants that rooted

The standard pH of 5.8 is recommended

Stage II Temperature

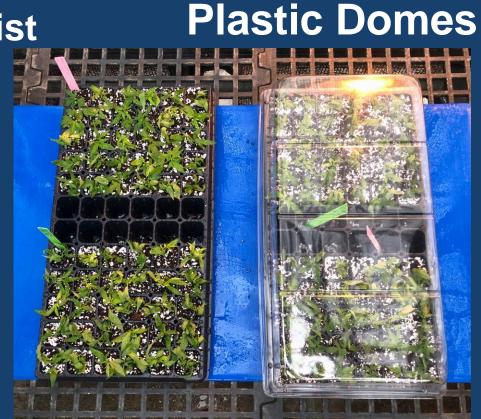
Results:


- 26°C and 28°C produced significantly greater nodes, roots, fresh weight, and rating
- Higher temperatures recommended for hemp micropropagation

Results:

- 0.25 μ M NAA, 0.5 μ M NAA, and 2.5 μ M IBA produced greater:
 - shoot fresh weight
 - root fresh weight number of nodes
- NAA produced more callus
- 2.5 μM IBA recommended to stimulate root growth while maintaining shoot quality *in vitro*

Stage III Auxin



Auxin

Stage IV Acclimation

Dome vs. intermittent mist Auxin vs. no auxin

Stage III & IV Acclimation

Dome

Auxin

No Auxin

 Clean environments for growing mother stock plants will increase the rates of success for Stage I

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM
- 15 g/L sucrose concentration improves quality while reducing costs

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM
- 15 g/L sucrose concentration improves quality while reducing costs
- 26°C & 28°C are the optimal temperatures for *in vitro* growth of hemp

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM
- 15 g/L sucrose concentration improves quality while reducing costs
- 26°C & 28°C are the optimal temperatures for *in vitro* growth of hemp
- Cytokinin type and concentration affect in vitro growth

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM
- 15 g/L sucrose concentration improves quality while reducing costs
- 26°C & 28°C are the optimal temperatures for *in vitro* growth of hemp
- Cytokinin type and concentration affect in vitro growth
- Stage III is not necessary

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM
- 15 g/L sucrose concentration improves quality while reducing costs
- 26°C & 28°C are the optimal temperatures for *in vitro* growth of hemp
- Cytokinin type and concentration affect in vitro growth
- Stage III is not necessary
- Plants that are acclimated under plastic domes perform better than intermittent mist

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM
- 15 g/L sucrose concentration improves quality while reducing costs
- 26°C & 28°C are the optimal temperatures for *in vitro* growth of hemp
- Cytokinin type and concentration affect in vitro growth
- Stage III is not necessary
- Plants that are acclimated under plastic domes perform better than intermittent mist
- Auxin assists root production, but not necessary for success

- Clean environments for growing mother stock plants will increase the rates of success for Stage I
- MS, LS, and DKW nutrient media are superior media options compared to WPM
- 15 g/L sucrose concentration improves quality while reducing costs
- 26°C & 28°C are the optimal temperatures for *in vitro* growth of hemp
- Cytokinin type and concentration affect in vitro growth
- Stage III is not necessary
- Plants that are acclimated under plastic domes perform better than intermittent mist
- Auxin assists root production, but not necessary for success
- Gelling agent and pH appear to have the least impact on growth compared to other variables that were tested

Examining the stages of micropropagation for hemp

Conor Stephen, MS 2022 Victor Zayas, PhD candidate Andrei Galic, MPS 2021 Victoria Zeng, BS 2022

QUESTIONS?

